Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diaquanickel(II)]-bis(μ -pyridine-4-sulfinato) $\left.-\kappa^{2} N, O ; \kappa^{2} O, N\right]$

Zhong-Xiang Du* and Su-Ning Ji

Department of Chemistry, Luoyang Normal University, Luoyang, Henan 471022,
People's Republic of China
Correspondence e-mail: dzx6281@126.com

Received 13 June 2009; accepted 24 June 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.031 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=12.2$.

In the title coordination polymer, $\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Ni}^{\mathrm{II}}$ ion is located on an inversion centre and is octahedrally coordinated by two N and two O atoms of four symmetry-related and deprotonated pyridine- 4 -sulfinate (ps) ligands together with two water molecules in axial positions. The ps^{-}anions, acting as μ_{2}-bridging ligands, link neighbouring $\mathrm{Ni}^{\mathrm{II}}$ ions into a chain structure along the c axis. These polymeric chains are extended into a three-dimensional framework via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with participation of the water molecules.

Related literature

For metal complexes derived from pyridine-4-sulfonic acid, see: Lü et al. (2007); Leslie \& George (2005a,b).

Experimental

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$b=7.309(5) \AA$
$M_{r}=379.05$	$c=7.602(5) \AA$
$\mathrm{Triclinic}, P \overline{1}$	$\alpha=96.784(8)^{\circ}$
$a=6.403(5) \AA$	$\beta=95.140(8)^{\circ}$

$\gamma=107.709(8)^{\circ}$
$V=333.6(4) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.662, T_{\max }=0.787$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 97$ parameters
$w R\left(F^{2}\right)=0.080$
$S=1.00$
1180 reflections
$\begin{aligned} \mu & =1.80 \mathrm{~mm}^{-1} \\ T & =296 \mathrm{~K}\end{aligned}$
$T=296 \mathrm{~K}$
$0.25 \times 0.17 \times 0.14 \mathrm{~mm}$

2417 measured reflections 1180 independent reflections 1043 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.68 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ni1-N1 ${ }^{\mathrm{i}}$	$2.008(2)$	$\mathrm{Ni} 1-\mathrm{O} 1$	$2.362(2)$
$\mathrm{Ni} 1-\mathrm{O} 3$	$2.026(2)$		

Symmetry code: (i) $x, y, z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O1-H1 } W \cdots \mathrm{O}^{\text {iv }}}^{\mathrm{H}}$	0.84	2.00	$2.826(3)$	168
O1-H2W $^{\mathrm{O}} 2^{\mathrm{v}}$	0.84	2.00	$2.827(3)$	169

Symmetry codes: (iv) $x, y-1, z ;(\mathrm{v})-x,-y,-z+2$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was financially supported by the National Natural Science Foundation of China (No. 20771054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2818).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Leslie, J. M. \& George, K. H. S. (2005a). Chem. Commun. pp. 1270-1272.
Leslie, J. M. \& George, K. H. S. (2005b). Chem. Mater. 17, 217-220.
Lü, J., Li, H.-F., Xiao, F.-X. \& Cao, R. (2007). Inorg. Chem. Commun. 10, 614 617.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m846 [doi:10.1107/S1600536809024258]
catena-Poly[[diaquanickel(II)]-bis $\left(\mu\right.$-pyridine-4-sulfinato)- $\left.\kappa^{2} N, O ; \kappa^{2} O, N\right]$

Z.-X. Du and S.-N. Ji

Comment

It is well known that sulfinic acid is not stable compared with sulfonic acid, so it is much difficult to obtain complexes of sulfinic acid as they are easy to be oxidized. In the previous literatures, several metal complexes derived from pyridine-4sulfonic acid have been reported (Leslie \& George, 2005a,b; Lü et al., 2007), whereas the complexes of pyridine-4-sulfinic acid has been not seen so far. Here we describe a nickel(II) complex from pyridine-4-sulfinic acid, (I), (Fig. 1).

The $\mathrm{Ni}^{\mathrm{II}}$ ion locates on a centre of symmetry and is in a distorted octahedral geometry with two water ligands in axial trans positions and two N and two O atoms of four symmetry-related ps^{-}ligands in equatorial plane (Table 1). Each ps^{-}ligand connects two $\mathrm{Ni}^{\mathrm{II}}$ ions and thus forms one-dimensional chain structure along c axis (Fig.2), with adjacent $\mathrm{Ni} \cdots \mathrm{Ni}$ separation distance of 7.602 (3) \AA.

Water molecules take part in hydrogen bonds as double donor, and $\mathrm{S}=\mathrm{O}$ of ps^{-}ligands acts only as a single acceptor (Table 2, Fig.3). Hydrogen bonds interactions stabilizes and extends chain structure of (I) into a three-dimensional network.

Experimental

A solution of $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 0.238 \mathrm{~g})$ in anhydrous ethanol $(10 \mathrm{ml})$ was injected dropwise into a solution of Hps $(2 \mathrm{~mol}, 0.286 \mathrm{~g})$ in methanol $(15 \mathrm{ml})$ under argon. The resulting mixture was stirred at 343 K for 4 h , then cooled to room temperature. After filtration, the filtrate was left to stand at room temperature for slow evaporation. Green block-shaped crystals suitable for X-ray diffraction were obtained in a yield of 17%. Analysis, found: C 31.58, H 3.11, N 7.45, S 16.93%; $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NiO}_{6} \mathrm{~S}_{2}$ requires: $\mathrm{C} 31.66, \mathrm{H} 3.17, \mathrm{~N} 7.39$, $\mathrm{S} 16.88 \%$.

Refinement

H atoms bonded to C were positioned geometrically with $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$, and treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The $\mathrm{O}-\mathrm{H}$ hydrogen atom was located in a difference Fourier map and refined isotropically.

Figures

supplementary materials

Fig. 2. The chain structure of (I) along c axis. H atoms on C atoms have been omitted.

Fig. 3. Packing diagram for (1), showing hydrogen bonds as dashed lines in $a b$ plane. H atoms on C have been deleted.

catena-Poly[[diaquanickel(II)]-bis(μ-pyridine-4-sulfinato)- $\left.\kappa^{2} N, O ; \kappa^{2} O, N\right]$

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=379.05$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.403(5) \AA$
$b=7.309$ (5) \AA
$c=7.602(5) \AA$
$\alpha=96.784(8)^{\circ}$
$\beta=95.140(8)^{\circ}$
$\gamma=107.709(8)^{\circ}$
$V=333.6(4) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& F_{000}=194 \\
& D_{\mathrm{x}}=1.887 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1414 \text { reflections } \\
& \theta=2.7-27.9^{\circ} \\
& \mu=1.80 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, green } \\
& 0.25 \times 0.17 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.662, T_{\text {max }}=0.787$
2417 measured reflections

1180 independent reflections
1043 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\text {min }}=3.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.080$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0581 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.00$
1180 reflections
97 parameters
Primary atom site location: structure-invariant direct methods
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.68 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ni1	0.5000	0.0000	1.0000	$0.02196(18)$
S1	$0.37032(11)$	$0.32818(9)$	$0.81172(8)$	$0.0282(2)$
O1	$0.1697(3)$	$-0.2599(3)$	$0.9900(3)$	$0.0432(5)$
H1W	0.1594	-0.3595	0.9190	0.065^{*}
H2W	0.0660	-0.2844	1.0522	0.065^{*}
O2	$0.1653(3)$	$0.3862(3)$	$0.7920(3)$	$0.0374(5)$
O3	$0.3059(3)$	$0.1287(3)$	$0.8709(2)$	$0.0330(4)$
N1	$0.4591(3)$	$0.1289(3)$	$0.2369(3)$	$0.0257(5)$
C1	$0.2579(4)$	$0.1289(4)$	$0.2770(4)$	$0.0306(6)$
H1	0.1377	0.0841	0.1873	0.037^{*}
C2	$0.2257(5)$	$0.1933(4)$	$0.4472(4)$	$0.0320(6)$
H2	0.0857	0.1920	0.4721	0.038^{*}
C3	$0.4053(4)$	$0.2601(3)$	$0.5805(3)$	$0.0250(5)$
C4	$0.6131(4)$	$0.2690(4)$	$0.5387(3)$	$0.0271(6)$
H4	0.7370	0.3191	0.6247	0.033^{*}
C5	$0.6316(4)$	$0.2014(4)$	$0.3656(4)$	$0.0304(6)$
H5	0.7713	0.2066	0.3369	0.036^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

$$
U^{11} \quad U^{22} \quad U^{33} \quad U^{12} \quad U^{13} \quad U^{23}
$$

Ni1	$0.0291(3)$	$0.0292(3)$	$0.0131(2)$	$0.0168(2)$	$0.00585(17)$	$0.00249(17)$
S1	$0.0353(4)$	$0.0309(4)$	$0.0215(4)$	$0.0151(3)$	$0.0082(3)$	$0.0004(3)$
O1	$0.0457(12)$	$0.0320(11)$	$0.0528(13)$	$0.0108(9)$	$0.0236(10)$	$0.0015(9)$
O2	$0.0473(12)$	$0.0441(11)$	$0.0339(11)$	$0.0299(10)$	$0.0164(9)$	$0.0075(9)$
O3	$0.0414(11)$	$0.0401(10)$	$0.0251(9)$	$0.0212(9)$	$0.0098(8)$	$0.0081(8)$
N1	$0.0288(11)$	$0.0309(11)$	$0.0210(11)$	$0.0141(9)$	$0.0055(8)$	$0.0047(9)$
C1	$0.0284(13)$	$0.0412(15)$	$0.0254(14)$	$0.0162(11)$	$0.0033(11)$	$0.0040(11)$
C2	$0.0277(13)$	$0.0435(15)$	$0.0299(15)$	$0.0176(12)$	$0.0089(11)$	$0.0047(12)$
C3	$0.0328(13)$	$0.0246(12)$	$0.0217(13)$	$0.0134(10)$	$0.0079(10)$	$0.0047(10)$
C4	$0.0271(13)$	$0.0327(13)$	$0.0217(13)$	$0.0106(11)$	$0.0036(10)$	$0.0015(10)$
C5	$0.0304(14)$	$0.0377(15)$	$0.0275(15)$	$0.0160(12)$	$0.0084(11)$	$0.0053(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

Nil-N1 ${ }^{\text {i }}$	2.008 (2)
Ni1-N1 ${ }^{\text {ii }}$	2.008 (2)
$\mathrm{Ni} 1-\mathrm{O} 3{ }^{\text {iii }}$	2.026 (2)
Ni1-O3	2.026 (2)
$\mathrm{Ni} 1-\mathrm{O} 1^{\text {iii }}$	2.362 (2)
Ni1-O1	2.362 (2)
S1-O2	1.498 (2)
S1-O3	1.523 (2)
S1-C3	1.821 (3)
O1-H1W	0.8350
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{~W}$	0.8371
$\mathrm{N} 1{ }^{\mathrm{i}}$ - $\mathrm{Ni} 11-\mathrm{N} 1^{\text {ii }}$	180.000 (1)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{O} 3^{\text {iii }}$	90.55 (9)
$\mathrm{N} 1^{\text {ii }}-\mathrm{Ni} 1-\mathrm{O} 3^{\text {iii }}$	89.45 (9)
$\mathrm{N} 1^{\mathrm{i}}$ - $\mathrm{Ni} 1-\mathrm{O} 3$	89.45 (9)
$\mathrm{N} 1^{\text {ii }}-\mathrm{Ni} 1-\mathrm{O} 3$	90.55 (9)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 3$	180.000 (1)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{O} 1^{\text {iii }}$	92.01 (8)
$\mathrm{N} 1^{\text {ii }}-\mathrm{Ni} 1-\mathrm{O} 1^{\text {iii }}$	87.99 (8)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 1^{\text {iii }}$	85.24 (9)
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 1^{\text {iii }}$	94.76 (9)
$\mathrm{N} 1^{\mathrm{i}}$ - $\mathrm{Ni} 1-\mathrm{O} 1$	87.99 (8)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Ni1}-\mathrm{O} 1$	92.01 (8)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 1$	94.76 (9)
O3-Nil-O1	85.24 (9)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 1$	180.0
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	107.19 (12)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 3$	102.55 (12)
O3-S1-C3	99.77 (11)
Ni1-O1-H1W	114.8
Ni1-O1-H2W	135.0

N1-C5	1.336 (4)
N1-C1	1.350 (3)
$\mathrm{N} 1-\mathrm{Ni1}{ }^{\text {iv }}$	2.008 (2)
C1-C2	1.379 (4)
C1-H1	0.9300
C2-C3	1.386 (4)
C2-H2	0.9300
C3-C4	1.380 (4)
C4-C5	1.378 (4)
C4-H4	0.9300
C5-H5	0.9300
H1W-O1-H2W	109.3
S1-O3-Ni1	128.93 (12)
C5-N1-C1	118.2 (2)
C5-N1-Ni1 ${ }^{\text {iv }}$	119.50 (18)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni1}{ }^{\text {iv }}$	121.99 (18)
N1-C1-C2	121.9 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.1
C2- $21-\mathrm{H} 1$	119.1
C1-C2-C3	118.9 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5
C3-C2-H2	120.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.5 (2)
C4-C3-S1	119.35 (19)
C2-C3-S1	121.1 (2)
C3-C4-C5	118.0 (2)
C3-C4-H4	121.0
C5-C4-H4	121.0
N1-C5-C4	123.3 (2)
N1-C5-H5	118.3
C4-C5-H5	118.3

sup-4

supplementary materials

$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3-\mathrm{Ni} 1$	$-157.49(13)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$-174.8(2)$
$\mathrm{C} 3-\mathrm{S} 1-\mathrm{O} 3-\mathrm{Ni} 1$	$96.00(15)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 4$	$155.44(19)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 3-\mathrm{S} 1$	$-93.25(15)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 4$	$-94.3(2)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Ni} 1-\mathrm{O} 3-\mathrm{S} 1$	$86.75(15)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 2$	$-26.8(2)$
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Ni} 1-\mathrm{O} 3-\mathrm{S} 1$	$-1.28(15)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 2$	$83.4(2)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 3-\mathrm{S} 1$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-3.1(4)$	
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-2.8(4)$	$\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$174.71(19)$
$\mathrm{Ni} 1{ }^{\mathrm{iv}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$2.7(4)$	
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{Ni} 11^{\mathrm{iv}}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-171.20(19)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.1(4)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$0.3(4)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x, y, z+1$; (iii) $-x+1,-y,-z+2$; (iv) $x, y, z-1$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 1 \mathrm{~W} \cdots \mathrm{O}^{\mathrm{v}}$	0.84	2.00	$2.826(3)$	168
O1—H2W $\cdots \mathrm{O} 2^{\mathrm{vi}}$	0.84	2.00	$2.827(3)$	169
Symmetry codes: (v) $x, y-1, z$; (vi) $-x,-y,-z+2$.				

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

